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Individualized Short-Term Core Temperature
Prediction in Humans Using

Biomathematical Models
Andrei V. Gribok, Mark J. Buller, and Jaques Reifman∗

Abstract—This study compares and contrasts the ability of three
different mathematical modeling techniques to predict individual-
specific body core temperature variations during physical activity.
The techniques include a first-principles, physiology-based (SCE-
NARIO) model, a purely data-driven model, and a hybrid model
that combines first-principles and data-driven components to pro-
vide an early, short-term (20–30 min ahead) warning of an im-
pending heat injury. Their performance is investigated using two
distinct datasets, a Field study and a Laboratory study. The results
indicate that, for up to a 30 min prediction horizon, the purely
data-driven model is the most accurate technique, followed by
the hybrid. For this prediction horizon, the first-principles SCE-
NARIO model produces root mean square prediction errors that
are twice as large as those obtained with the other two techniques.
Another important finding is that, if properly regularized and de-
veloped with representative data, data-driven and hybrid models
can be made “portable” from individual to individual and across
studies, thus significantly reducing the need for collecting devel-
opmental data and constructing and tuning individual-specific
models.

Index Terms—Core temperature prediction, data-driven model,
first-principles model, heat injury, hybrid model, regularization,
time-series analysis.

I. INTRODUCTION

H EAT injury is the third leading cause of death of student
athletes at U.S. schools [1]. Heat injury is also a problem

for the armed forces, especially during deployments to localities
with very hot climates. Despite thorough prevention programs
developed by the U.S. Army Research Institute of Environ-
mental Medicine (USARIEM), from 2003 through 2005, there
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were over 4401 heat injuries in the armed forces, of which 784
were heat strokes and 3617 were heat exhaustions [2]. There
were an additional 17 heat-related fatalities during this time pe-
riod. Although heat injuries are considered to be preventable,
a previously published study showed that humans lack warn-
ing mechanisms to signal an impending serious heat injury [3];
hence, in certain situations, a reliable system for real-time con-
tinuous monitoring and prediction of body core temperature
would be highly desirable. Such a prediction system, coupled
with the known clinical limit of 40 ◦C [4], could potentially
prevent heat-related injuries.

Recent advances in the ability to monitor physiology vari-
ables have resulted from the development of new biosensors
and information-processing capabilities. These capabilities have
a direct impact on how closely a person’s state can be mon-
itored during civilian activities or during military operations,
including the possibility of predicting changes in many vital
physiological variables, such as body core temperature, heart
and respiratory rates, and even such subtleties as level of alert-
ness and performance. The technological breakthroughs in the
development of hardware and firmware were also accompa-
nied by an equally profound and significant progress in such
fields as data mining and machine learning. New technologies
to collect and store relatively large amounts of physiological
data in the field allow researchers to explore new opportunities
in data-driven methods to forecast physiological variables and
status.

For example, the Warfighter Physiological Status Monitor-
ing (WPSM) program at the U.S. Army Medical Research
and Materiel Command seeks to develop a soldier-wearable,
computer-based system for providing commanders and medics
with critical physiological status information about dismounted
war fighters [5], [6]. The WPSM system has two primary aims:
the first is to prevent nonbattle injuries, such as heat stroke
and dehydration, and the second is to optimize casualty man-
agement through improved casualty detection, diagnostics, and
triage. These aims require an array of sensors, a personal area
network, and data management software as well as a variety of
decision-support algorithms for monitoring and predicting a sol-
dier’s physiological status. In this paper, we focus on mathemat-
ical modeling techniques that can be used to prevent impending
nonbattle heat injuries, such as heat exhaustion and heat stroke.
We compare and contrast the ability of three types of models (a
first-principles model, a purely data-driven model, and a hybrid
model that combines first-principles and data-driven compo-
nents) to produce short-term (20–30 min), individual-specific

0018-9294/$25.00 © 2008 IEEE
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predictions of body core temperature variations during physical
activity.1

Physiological models commonly rely on first-principles
knowledge about various mechanisms in the human body and
their associated dynamics. Although some underlying phys-
iological phenomena are not well understood and are there-
fore unmodeled, the resulting first-principles models may still
be effective in predicting some population-average responses
with certain fidelity. However, unless the model parameters
are constantly adjusted, based, for example, on measurements
from a specific individual, in general, first-principles mod-
els are not capable of representing interindividual variabil-
ity [7], [8], leading to inaccurate predictions for specific in-
dividuals. Individuals with similar anthropomorphic charac-
teristics and subject to the same workload and environmental
conditions may yield very different physiological responses.
Interindividual variation in physiological response is particu-
larly critical at limiting thresholds of physiological health, such
as at extreme values of core temperature, where small varia-
tions can make a difference between a suitable recovery and
an irreversible pathological condition. The need to represent
interindividual variability can be addressed by developing mod-
els that utilize historic and current data that are specific to the
individual.

One approach to improve the fidelity of first-principles mod-
els and account for interindividual variability is to incorpo-
rate data-driven or “black box” models into the first-principles
model to create a “hybrid” model [9]. In this case, the data-
driven portion of the hybrid model is intended to capture the
dynamics and the physiological idiosyncrasies of each partic-
ular individual, which the first-principles model cannot cap-
ture, by “learning,” during the “training” phase, the residu-
als between predictions produced by the first-principles model
and the actual measurements. This allows hybrid models to
account for interindividual variability and also for parts of
the poorly modeled dynamics. The hybrid approach was in-
troduced to the physiological community in a previous study
[9], where different hybrid schemes were presented and con-
trasted. Hybrid models have been widely used in system iden-
tification and control in industrial processes and have proven
to be quite effective [10], [11]. Hybrid modeling of physi-
ological dynamics holds equal promise in this regard [12],
[13].

Another approach to physiological predictions is to employ a
purely data-driven model. A stand-alone, data-driven model can
be trained on historical data, and subsequently used to predict
future unknown data. The historical data can include indepen-
dent variables related to the predicted variable as well as delayed
instances of the predicted variable itself, that is, previous core
temperature measurements in this case. An inherent limitation
of purely data-driven models is their inability to extrapolate re-
liably beyond the distribution of the “training” data. However,

1In collecting the data presented in this manuscript, the investigators adhered
to the policies for protection of human subjects as prescribed in Army Regulation
70–25, and the research was conducted in adherence with the provisions of 45
CFR Part 46. The subjects gave their informed consent for the laboratory study
after being informed of the purpose, risks, and benefits of the study.

linear data-driven models are quite often good extrapolators if
the underlying dependencies can be reasonably modeled by lin-
ear laws. Furthermore, many physiological variables are tightly
bounded by homeostatic limits, thus simplifying the problem
of collecting data that cover all physiologically plausible sit-
uations. These provide an opportunity to properly train lin-
ear data-driven models on representative samples of historical
data and determine their generalization effectiveness, includ-
ing their ability to be made “portable” from one individual to
another.

Another general limitation of data-driven modeling is the
possibility of “excessive explanation” of the training data, lead-
ing to an “overfitted” model with poor generalization capa-
bilities. The problem of overfitting is quite often understated
in the case of linear data-driven models; however, this ef-
fect is as detrimental in linear models as it is in their non-
linear counterparts. This paper demonstrates that proper reg-
ularization of purely data-driven models and the data-driven
portion of hybrid models is crucial to their generalization ca-
pabilities, since it precludes overfitting and produces models
that capture the underlying data dependencies but not their
idiosyncrasies.

II. METHODS

A. First-Principles SCENARIO Model

The first-principles SCENARIO model [14], [15], developed
at USARIEM, was designed to estimate and predict core temper-
ature, heart rate, and sweat rate, without requiring prior knowl-
edge and direct measurement of these physiological variables.
The underlying model for SCENARIO simulates the time course
of core temperature variations, while taking into account differ-
ent factors that affect human thermoregulation. The temperature
distribution within the human body is represented by a lump-
parameter model consisting of six concentric cylindrical com-
partments. Heat flow is then modeled by a set of macroscopic en-
ergy conservation equations based on heat convection between
the central blood compartment and the adjacent core, muscle,
fat, and vascular skin compartments; radial heat conduction be-
tween every pair of adjacent compartments; and air convection,
radiation, and sweat evaporation between the superficial avas-
cular skin layer and the environment and transition through the
clothing [14], [15]. The energy conservation equations are rep-
resented by a set of six ordinary differential equations that can
be expressed as

dT

dt
= A(t)T (t) + B(t) (1)

where T (t) ∈ R6×1 is a vector representing the bulk tem-
peratures in each of the six modeled compartments, and
A(t) ∈ R6×6 is a time-varying matrix determined by param-
eters, such as the conductance between two adjacent compart-
ments and blood flow between the compartments. The vector
B(t) ∈ R6×1accounts for the secondary inputs to the system,
and it is primarily governed by the metabolic rate in each of
the compartments, as well as the respiration rate. The various
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factors that affect human thermoregulation and used as input to
SCENARIO include:

1) environmental: mean radiant temperature, ambient tem-
perature, relative humidity, wind speed;

2) activity: walking speed, pack weight (load), terrain factor,
slope/grade, water intake;

3) individual characteristics: age, weight, height, fat percent-
age;

4) clothing: insulation and permeability.
Being a first-principles model, SCENARIO does not use past

temperature measurements to produce future core temperature
predictions. Another advantage is that, based on the range of
applicability of each underlying model component, the range
of applicability of the overarching model can be determined a
priori. In addition, SCENARIO can predict other physiological
variables, such as heart and sweat rates. However, because SCE-
NARIO was designed as a mission-planning tool, as opposed to
an early thermal warning system, it is not expected to perform as
well as customized models for short-term temperature predic-
tions, where core temperatures are highly correlated. Although
SCENARIO’s input parameters are specific to an individual’s
characteristics, internally, it does not represent parameter model
differences to fully account for interindividual variability. Addi-
tionally, since all parameters are estimated on the basis of exper-
imental data, inherent observation error and limited sample size
may lead to discrepancies that, compounded, could contribute to
model inaccuracy. Furthermore, due to simplifying modeling as-
sumptions and unmodeled (unknown) physiology, SCENARIO
does not fully represent some of the physiological dynamics.
Hence, SCENARIO is partly used here as a benchmark, and
it is selected among other first-principles models [16]–[18] be-
cause it has been traditionally used by the Army to analyze
the human response to heat stress and was readily available to
the authors. We acknowledge, however, that the reported results
are only applicable to SCENARIO and cannot be generalized
to other first-principles models, which may demonstrate better
performance under similar conditions.

B. Data-Driven Modeling

Data-driven linear models have been used for time-series pre-
diction since the early 1970s [19]. One of the most widely
used linear models is the autoregressive (AR) model [10],
which allows for the inference of estimates ŷn , at time n,
n = m + 1, . . . , N, of signal y as a function of previous ob-
servations

ŷn =
m∑

i=1

biyn−i + εn . (2)

where b represents the vector of AR coefficients to be de-
termined, εn denotes white noise with unknown variance, N
denotes the number of data samples, and m is the order of
the model, i.e., the number of previous measurements used
to predict the future measurement ŷn . Interchanging ŷn for
yn , and defining the (N − m) × (m) design matrix U and the

Fig. 1. Data-driven approach to physiological time-series prediction; y is the
actual core temperature measurement, ŷ is the predicted core temperature, ε
is the residual between the measured core temperature and the predicted core
temperature, and inputs represent exogenous data into to the system, such as
ambient temperature and past measurements of core temperature. The crossing
of the AR box signifies that the AR coefficients are computed during the training
phase.

(N − m) × (1) and (m) × (1) vectors y and b, respectively, as

U =




ym ym−1 · · · y1
ym+1 ym · · · y2

...
...

. . .
...

yN −1 yN −2 · · · yN −m


 ,

y =




ym+1
ym+2

...
yN


 , b =




b1
b2
...

bm


 (3)

we arrive at an overdetermined system of linear equations. This
system can be solved for b by the least-squares (LS) method,
which seeks b that minimizes

argmin
b

‖y − Ub‖2 (4)

provided the design matrix U is well-conditioned. In addition to
the estimation of the coefficients b, the model’s order also needs
to be determined, which can be done by using some analytical
criterion, like the minimum description length approach [20]
and Akaike information criterion [21], or by cross-validation.

Data-driven models are generally used in problems where
obtaining a first-principles model is either impractical or difficult
due to excessive complexity of the underlying phenomena to
be modeled, and it was a motivating factor for this study. A
schematic diagram of the data-driven approach is presented in
Fig. 1. The advantage of the data-driven approach is that the
explicit relationships between the input–output variables in the
modeled phenomenon do not need to be known and can be
“learned” during the “training” phase. The approach, however,
is highly dependent on data availability and on the quality of the
available data. Another difficulty is that learning input–output
dependencies from noisy data constitutes an ill-posed problem,
since several models may explain the training data quite well,
generally due to model overfitting, although not all models will
posses good generalization capability.

Data-driven models can also be nonlinear, represented by
artificial neural networks (ANNs), for example. The difference
between AR and ANN models is that AR models can only
capture linear dependencies present in the data, while ANNs
can also accommodate nonlinear relationships. However, due
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Fig. 2. Hybrid approach to physiological time-series predictions; z is the
SCENARIO core temperature estimates, y is the actual core temperature mea-
surements, ŷ is the predicted value of the residual ε (i.e., the difference between
the SCENARIO prediction and the core temperature measurement), inputs are
exogenous inputs to the system, and δ is the residual between ŷ and ε.

to the presence of local minima in the cost function, ANNs
may be harder to train. Also, in cases where the process input–
output dependencies are linear, they provide no added benefit.
In a previous core temperature prediction study by our group,
ANNs failed to outperform linear models [13].

C. Hybrid Modeling

Another modeling approach is the hybrid technique, which
tries to capitalize on the best parts of both models—first-
principles and data-driven. The general idea of hybrid modeling
is presented in Fig. 2, where the data-driven component is rep-
resented by an AR model. The hybrid approach first attempts to
predict a data value for a physiological variable using the first-
principles model. The residual value ε of this prediction (i.e.,
the difference between the first-principles model prediction and
the measured value) is then presented to a data-driven model
as a target signal, and the data-driven model is trained to fit ε
based on its past values and, possibly, exogenous inputs. After
the training is complete, new data are predicted by adding the
predictions of the first-principles model with those of the data-
driven model. In our implementation, only delayed instances of
the residual signal ε are used as inputs to the data-driven portion
of the hybrid.

An important difference from the purely data-driven approach
is that, in hybrid modeling, the data-driven component learns the
residuals between the first-principles predictions and the actual
measurements, while in purely data-driven modeling, the model
learns the actual measurements. Several arguments have been
put forward to justify the use of hybrid modeling for time-series
predictions. For example, it was shown previously [22] that,
provided the first-principles model has the same form as the
true process model, the hybrid is guaranteed to converge to the
true model as the amount of training data increases indefinitely.
Another argument is that the residuals may be easier to learn than
the actual measurements [23] because the residuals only cover
a subspace of the whole process space. Significant successes
in applying hybrid models have been reported in chemical and
biochemical engineering [23]. However, to produce accurate
predictions, hybrid models require high-fidelity first-principles
models capable of accurately predicting both the training data
and the testing data. If they fail to produce good predictions for

the training data, the target signal for the data-driven part of the
hybrid will not be adequate. Also, if they fail to accurately model
the testing data, the hybrid predictions will not be accurate, since
in this case, the overall prediction error will be dominated by the
error produced by the first-principles component of the model.

D. Regularization of the Data-Driven and Hybrid Models

As mentioned earlier, fitting a data-driven AR model to data
(either as a stand-alone module or as part of a hybrid model) re-
quires estimation of the AR coefficients as one of the steps. The
coefficients are usually determined by minimizing the LS func-
tional in (4). Unfortunately, due to the highly correlated nature
of the core temperature signal, the design matrix U is quite often
ill-conditioned or even numerically rank deficient. This causes
the estimates of the AR coefficients b to be highly unstable, pro-
ducing poor-quality predictions, i.e., degraded generalization.
The reason for the degraded performance is that the uncon-
strained minimization of (4), when U is ill-conditioned, causes
the solution to be dominated by high-frequency components
that overfit the training data [24]. The practical consequences of
the ill-conditioning of the design matrix U are demonstrated in
Section III.

It is well known that the LS solution to (4) yields an unbiased
estimator with the smallest variance among unbiased estimators
[25]. Although unbiasedness is intuitively desired, in practice, it
could be quite useless due to the potential large variance of the
unbiased estimator. To deal with this problem, a class of biased
estimators known as regularized least squares was proposed
by Tikhonov [24]. In this method, the minimization of (4) is
replaced by the minimization of the augmented functional

argmin
b

‖y − Ub‖2 + λ2 ‖Lb‖2 (5)

where the regularization parameter λ controls the tradeoff be-
tween the smoothness of the solution and its fit to the training
data, and L is a well-conditioned matrix; for example, a discrete
approximation of a second-order derivative operator was used
in this study. The major benefit of the regularized LS estimate is
that it reduces the variance of the solution by introducing a small
bias to generate a much smaller estimation error, defined as the
variance plus the square of the bias between the true (unknown)
parameter and its estimate [26].

E. Datasets

We employed two datasets to develop, compare, and contrast
the three modeling approaches: Field (dataset A) and Laboratory
(dataset B).

1) Field Study (Dataset A): The Field dataset [15] consists
of physiological data collected from eight U.S. Marine Corpo-
rations volunteers [age: 25 year (SD 3.2); height: 174 cm (SD
6.7); weight: 71.6 kg (SD 7.9); body fat pct: 15.9% (SD 7.1),
mean and standard deviation (SD)] during a four-day field exer-
cise. Each 10 h day involved a 3 mi morning march to a shooting
range, followed by day-long exercises and rotations within fir-
ing stations, and a march back via the same route in the evening.
Subjects wore air-permeable battle dress uniform (thermal
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resistance = 1.32 m2 ·K/W) and, when marching, carried a pack
load of 26±1.0 kg. The ground temperature during the day was
29.8 ◦C (SD 0.5), and the dew point and wind speed were 21.1
◦C (SD 0.5) and 4.2 m/s (SD 0.5), respectively. The core tem-
perature for each subject was measured through a telemetry pill
ingested at the beginning of each day. There is a close relation-
ship among core temperatures measured by esophageal probes,
rectal probes, and telemetry pills during exercise activities in
both temperate and hot conditions [27].

Unfortunately, sometimes the signal from the pill could not
be detected, and other times, the pill produced very noisy tem-
perature signals. To eliminate data artifacts and reduce noise
levels, the temperature data are preprocessed using median and
moving-average filters. The median filter is used for its known
outlier rejection capabilities, and the smoothing filter is used
to remove high-frequency signal noise and to interpolate short
regions of missing values. The core temperature was recorded
every minute for each of the 10 h days for each of the four days.

2) Laboratory Study (Dataset B): The Laboratory-based
dataset [28] consists of core temperature measurements col-
lected from nine volunteer subjects [age: 23 year (SD 4); height:
174.2 cm (SD 5.8); weight: 73.4 kg (SD 6.5); body fat pct:
17.9% (SD 3.99)], whose anthropomorphic characteristics are
very similar to those of the Field study, dataset A. The subjects
walked on a treadmill under two environmental conditions: con-
trol (day 1: 20 ◦C temperature and 50% relative humidity) and
humid (day 2: 27 ◦C temperature and 75% relative humidity).
The wind speed was 1.1 m/s for both conditions. On the morn-
ing of the test days, the subjects, dressed in air-permeable battle
dress uniform with the same thermal resistance as in the field
study, were instrumented for the collection of various physio-
logical variables, including core (rectal) temperature. Next, they
sat on a chair for 10 min just before starting to walk at 3 mi/h
on level treadmills. The walking paused after every 30 min for
10 min of sitting. There were four 30 min walking periods/test
so that the entire experiment lasted a total of 170 min, including
10 min rest periods at each end. At the end of each 10 min
pause, the subjects were given 150 mL of water before walk-
ing again. Rectal temperature (assumed to be representative of
the core temperature) was collected continuously and recorded
every minute, as in dataset A.

Typical temperature measurements for two subjects for each
of the two datasets are presented in Fig. 3. Notice that the
standard deviation of the core temperature signal in the Field
study, dataset A, is two times larger than that of the Laboratory
study, dataset B. Dataset A also has a larger amount of data,
which is reflected by the different scales on the time axes in
Fig. 3.

F. Simulation Tests

Four different computer simulations are considered, which
are referred to as simulations S1, S2, S3, and S4.

1) S1: Same-subject simulation. For each of the eight sub-
jects in dataset A, a data-driven model and a hybrid model
are separately trained on one (randomly selected day) of
the four days of each subject’s data, resulting in 16 (8×2)

Fig. 3. Temperature profiles for two subjects from the two datasets used in
the simulations. Top: Field study, dataset A, Bottom: Laboratory study, dataset
B. Note different scales on the x-axis.

different models. The subject-specific models so devel-
oped are tested on that subject using the remaining three
days of available data. The SCENARIO model is sepa-
rately applied to the corresponding three days, as in the
testing of the data-driven and hybrid models, for each of
the eight subjects.

2) S2: Cross-subject simulation. Sixteen models are devel-
oped as in simulation S1 earlier, and then, the models are
tested on all four days of the other seven subjects’ data.
That is, each model is blind to the subject’s data it is tested
on. The SCENARIO model is separately applied to all four
days of each of the seven subjects used for testing.

3) S3: Cross-study A–B simulation (train on dataset A and
test on dataset B). Sixteen models are developed as in
simulation S1 earlier, and then, the models are tested for
both days of each of the nine subjects in dataset B, that is,
each model is blind not only to the subject it is tested on
but also to the study itself. The corresponding SCENARIO
simulations are run separately for each of the two days for
each of the nine subjects in dataset B.

4) S4: Cross-study B–A simulation (train on dataset B and
test on dataset A). Similar to simulation S3 but 18 instead
of 16 models (one data-driven and one hybrid model for
each of the nine subjects of dataset B) are developed us-
ing data from the first day of the Laboratory study, and
subsequently, tested on all four days and eight subjects
in dataset A. The corresponding SCENARIO simulations
are run separately for each of the four days for each of the
eight subjects in dataset A.

For all simulations of the data-driven and hybrid models, the
prediction horizon, unless otherwise noted, is set to 20 min. The
20 min ahead prediction horizon is selected based on its prac-
tical utility, since it provides sufficient warning time to prevent
thermal stress injuries while allowing the models to produce
data-driven predictions of acceptable accuracy. Note that there
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Fig. 4. Top: unregularized core temperature predictions using AR models,
bottom: regularized AR models. The solid curve represents the actual measured
core temperature for day 1, subject #1 in dataset A. The dashed curves rep-
resent 20 min ahead temperature predictions obtained with unregularized and
regularized AR models of order 25, trained on day 2 data from subject #1.

is no prediction horizon to speak of for SCENARIO, since it iter-
atively computes the entire temperature profile over the desired
time length. Each run is performed for a specific individual, i.e.,
it does not perform cross-individual predictions, since the in-
put data to SCENARIO correspond to the individual’s data it is
predicting. Also, SCENARIO requires numerous independent
variables as inputs, such as walking speed, terrain, slope/grade,
and water intake, which we assume to be known.

Through experimentation with different model structures, we
determined that a simple AR model suffices to predict core
temperature for the purely data-driven models and to predict
residuals for the hybrid models. The order of the models is
selected using a cross-validation approach, and it is determined
that, for all the subjects in dataset A, the overall optimum order
is around 25. An AR model of this order is used for both data-
driven and hybrid models for both datasets. The adequacy of the
models is verified by checking for whiteness of the residuals.
We find that the residuals’ autocorrelation function consistently
lies within the 99% confidence intervals, thus confirming that
the models correctly describe the data. The core temperature
data (as well as the residuals used in the hybrid model) are
also detrended before application of the AR models to ensure
stationarity.

The coefficients of the AR models are estimated using the
regularization technique described earlier. As pointed out in
Section II, unregularized models produce highly inconsistent
predictions, as shown in the top graph in Fig. 4, whereas reg-
ularized predictions (Fig. 4, bottom) are much smoother and
overlap the actual measurements. Fig. 4 shows the AR model’s
20 min ahead predictions for day 1 (subject #1 in dataset A),
where the models are trained on day 2 data for the same subject.

Notice the oscillatory nature of the unregularized core tem-
perature predictions and the dramatic change in the quality of
the predictions after the model is regularized, reflected in a much

Fig. 5. RMSE for the same-subject (simulation S1) predictions. For the hybrid
and data-driven models, each bar represents average RMSE of the model’s
predictions for that individual over the three days that are not used for training.
For SCENARIO, the bars represent the average RMSE for the corresponding
three days. The error bounds correspond to one standard deviation. The standard
deviation is calculated over all testing subjects and all testing days.

smaller root mean square error (RMSE)

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (6)

where ŷ and y are the predicted and measured core temperature
values, respectively, and N is the number of samples. Although
this example is for a purely data-driven model, the same holds
for the data-driven counterpart of the hybrid model. All of the
results presented here are based on regularized models with
the regularization parameter λ in (5) selected by employing the
discrepancy principle [29].

III. RESULTS AND DISCUSSIONS

Simulation S1 is devised as a basic test to determine whether
data-driven and hybrid models trained on portions of the data
for a given individual are able to predict other portions of the
same individual’s data not used for training. To accomplish
this, for each of the eight subjects in dataset A, we develop
one data-driven model and one hybrid model using data from
one (randomly selected) day out of the four days of the Field
study. Each model is then applied to predict, 20 min ahead,
the core temperature for the corresponding individual for the
remaining three days. The RMSE for each subject’s predictions,
for each model, is calculated for all three days and averaged.
The SCENARIO’s RMSE is calculated as the average over the
corresponding three days for each subject. The RMSEs for the
three models are presented in Fig. 5 along with the error bounds
corresponding to one standard deviation.

These results show that data-driven and hybrid models can
generalize well if each model is applied to predict the subject
for which it is developed, even if model training and testing are
performed to data collected on different days. Although these
results are promising, their general applicability would require
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Fig. 6. RMSE for cross-subject (simulation S2) prediction. Each bar repre-
sents average prediction errors (RMSEs) over the other seven subjects for the
AR models (both data-driven and hybrid) trained using that individual’s data.
Similarly, the SCENARIO RMSEs represent prediction errors averaged over
the prediction of the other seven subjects. The error bounds correspond to one
standard deviation. The standard deviation is calculated over all testing subjects
and all testing days.

separate collection of core temperature training data for each
individual, which is not desirable for practical applications. The
most useful application of the data-driven and hybrid techniques
comes from the possibility of developing models for one subject
and using them to predict different subjects, thus making data-
driven models “portable” from one individual to another and
reducing the need for data collection.

To test this hypothesis, we perform the cross-subject simu-
lation S2. Fig. 6 illustrates the RMSEs for the three modeling
approaches, where for each one of the 24 (8×3) models the
RMSEs are averaged over the four days and seven subjects that
the models are applied to predict core temperature.

Although the prediction errors for the data-driven and hybrid
models are slightly higher than those in Fig. 5, they are still
smaller than SCENARIO’s RMSEs.

Fig. 7 shows a typical temperature profile prediction for the
cross-subject simulation S2.

The predictions are for the second day of subject #1, where
the hybrid and the data-driven models are trained with data from
the first day of subject #6. Predictions are for both 20 and 30
min horizons. As indicated in the figures and the corresponding
RMSEs, the quality of the hybrid and data-driven predictions
is highly dependent on the prediction horizon. As expected,
the longer the horizon is, the larger is the prediction error. The
SCENARIO predictions are obtained by providing input data
for subject #1 and having the code consecutively predict the
entire temperature profile for that subject at 1 min intervals.

The most challenging set of experiments consists of the two
cross-study simulations, S3 and S4, where the data-driven and
hybrid models are trained on dataset A and tested on dataset
B, and vice versa. These two cases are especially challenging
because, in addition to using these models to predict “unseen”
subjects, the two datasets were collected under very different

Fig. 7. Core temperature predictions for subject #1, day 2 of dataset A, using
three different modeling techniques [(A) SCENARIO, (B) data-driven, and (C)
hybrid]. The solid curve represents the measured core temperature. The dashed
and dotted curves [(B) and (C)] represent 20 and 30 min ahead predictions,
respectively, obtained with the hybrid and data-driven techniques, which are
trained using day 1 data from subject #6.

conditions, where the subjects performed significantly differ-
ent activities. The results for simulation S3, where dataset A
is used to develop the models that are subsequently tested on
dataset B, are presented in Fig. 8. The results of S4, where the
roles of datasets A and B are reversed, are illustrated in Fig. 9.
The results in Fig. 8 indicate that the AR-based models (hy-
brid and data-driven) are consistently and significantly better
than SCENARIO. Interestingly, but perhaps not surprisingly,
the predictive performance of the three models is quite differ-
ent in Fig. 9, where none of the approaches indicates a clear
advantage over the others.

The results of this study provide interesting insights into the
modeling capabilities of the three different techniques. Specif-
ically, for simulation S1, the average RMSEs (mean and SD)
for the three different techniques are: SCENARIO 0.41 ◦C (SD
0.05), hybrid 0.22 ◦C (SD 0.04), and data-driven 0.16 ◦C (SD
0.06). These results suggest that, when large amounts of data
from a given subject are available to train data-driven and hy-
brid models, their predictive capabilities can be quite good.
The results also indicate that these models can generalize well
across different training and testing days without jeopardizing
the models’ predictive capabilities. The first-principles SCE-
NARIO model is third in predictive performance, which indi-
cates that, due to the complexity of the thermoregulatory mech-
anisms in the human body, not all physiological factors can be
accounted for in metabolic rate calculations, which are used by
SCENARIO as an intermediary step during core temperature
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Fig. 8. RMSE for cross-study A–B (simulation S3) predictions. Each bar
represents average prediction errors over the nine subjects and two days of
dataset B data for AR models (both data-driven and hybrid) trained using the
data of the subjects from dataset A indicated on the abscissa. The SCENARIO
bars (indicating the same value) represent averaged RMSEs over the two days
and all nine subjects in dataset B. The error bounds correspond to one standard
deviation. The standard deviation is calculated over all testing subjects and all
testing days.

Fig. 9. RMSE for cross-study B–A (simulation S4) predictions. Each bar
column represents average prediction errors over the eight subjects and four
days in dataset A data for AR models (both data-driven and hybrid) trained
using the data of the subjects from dataset B indicated on the abscissa. The
SCENARIO bars (indicating the same value) represent averaged RMSEs over
the four days and all eight subjects in dataset A. The error bounds correspond
to one standard deviation. The standard deviation is calculated over all testing
subjects and all testing days.

estimation [30]. Equations modeling sweating, shivering, and
vasoconstriction/vasodilatation can also be sources of error.

Simulation S2 is probably a more practically important study,
since it examines the situation where a model developed for one
individual, using the individual’s data, is applied to predict the
temperature of other individuals from the same study perform-
ing similar activities. For simulation S2, the average RMSEs are:
SCENARIO 0.42 ◦C (SD 0.02), hybrid 0.23 ◦C (SD 0.01), and
data-driven 0.20 ◦C (SD 0.02). As expected, due to interindivid-
ual variability not accounted for in the AR model coefficients,

the performance of the data-driven model, in particular, wors-
ened in comparison with simulation S1, but not significantly.

Simulation S3 is quite revealing in terms of the importance for
data-driven and hybrid models to have an adequate amount and
range of data variability to train the model’s coefficients. Be-
cause the range of variability of core temperature measurements
is much greater in the Field dataset A than in the Laboratory
dataset B, as illustrated in Fig. 3, models trained with the former
are capable of predicting the latter well. This is reflected by the
low average RMSEs for simulation S3 [SCENARIO 0.34 ◦C
(SD 0.03), hybrid 0.13 ◦C (SD 0.01), and data-driven 0.06 ◦C
(SD 0.01)], which are significantly lower (for the hybrid and the
data-driven models) than those in simulations S1 and S2. This
suggests that these two modeling approaches may provide more
accurate predictions across a different study than that used to
develop the models as long as the different study has a narrower
range of temperature distribution than the original study. It also
suggests that the large amount and range of data variability is
able to offset interindividual variability detriments in modeling
accuracy.

Simulation S4 illustrates the flip side of this situation. The
RMSEs for simulation S4 are as follows: SCENARIO 0.44 ◦C
(SD 0.15), hybrid 0.53 ◦C (SD 0.15), and data-driven 0.40 ◦C
(SD 0.16). The performance of the data-driven and hybrid mod-
els deteriorates when they are trained with laboratory study data,
consisting of a limited amount and narrow range of temperature
variability, and used to predict core temperature of subjects from
the Field study. This simulation clearly reveals two data require-
ments for the development of “portable” models: 1) availability
of large amounts of past temperature measurements and 2) sig-
nificant range of data variability, encompassing the range of
temperatures to be predicted. These are corroborated by recent
findings where data-driven models were found to generalize
well and be made “portable” when applied to the subjects of the
Laboratory study, dataset B [31]. It also suggests, as inferred
previously [15], that controlled laboratory datasets may not ad-
equately reflect the true variability of core temperature in the
field and should be used with caution when applied to develop
models for field use.

The poor performance of the hybrid in simulation S4, due to
the limited range and amount of data, is caused by the inability
of the data-driven portion of the model to properly learn the
residuals during training. The performance of the purely data-
driven model deteriorated significantly. However, it is still able
to learn the correlations in the training signal and to produce an
RMSE that is lower than that of the first-principles SCENARIO
model.

The hybrid model displays a middle range performance in
terms of prediction accuracy. This can be explained by ob-
serving that the residual signal, which is generated by tak-
ing the difference between the measured and the SCENARIO-
predicted temperature, could be harder to “learn” (by the AR
model component of the hybrid) than the temperature measure-
ments. This situation arises when the first-principles component
of the hybrid model does not adequately describe the data for
a given individual, yielding “random” residual signals that can-
not be learned or predicted by the AR portion of the model.
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Conversely, when the first-principles model explains the data
well, the unexplained portion of the data, i.e., the residuals,
will become white noise with no autocorrelation to learn. Ob-
viously, in this case, there is no need to use a hybrid approach.
Hence, the hybrid should be used in situations where the first-
principles model can successfully explain part of the data but
leaves some amount of data unexplained, perhaps the one due
to interindividual variability. Also, our results indicate that the
hybrid performs well as long as the order of the AR model
used to characterize the testing data does not significantly differ
from the order of the model needed to characterize the training
data.

The power of the purely data-driven approach for near-term
predictions comes from the nature of the core temperature signal
and the thermal inertia of the human body thermoregulatory pro-
cess. The low-frequency and smooth nature of the signal lends
itself perfectly to AR modeling and predictions, which together
with the variability constraints imposed by regularization, force
the model to produce core temperature outputs with low vari-
ation and excellent predictive capabilities. The relatively large
inertia (or time constant) of the body thermoregulatory process
is what allows the AR model to make accurate predictions min-
utes ahead. The thermal inertia, characterized by the specific
heat capacity of the human body, regulates and precludes rapid
changes in core temperature. This can be explained, for exam-
ple, by noting that a significant percentage of the human body
(up to 75%) is composed of water and that water has one of the
largest specific heat capacities of all substances. This large spe-
cific heat capacity allows the human body to absorb a significant
amount of energy before its temperature rises, thus permitting
accurate short-term predictions.

Data-driven models rely entirely on the autocorrelations of
the core temperature signal, which do not to exhibit large in-
terindividual variability in our studies, provided individuals are
involved in similar activities. As illustrated in Fig. 7, the model
accuracy deteriorates as the prediction horizon increases and
extends beyond the time constant of the thermal inertia of the
human body thermoregulatory process, estimated by us to be
around 15 min. This fact is demonstrated in Fig. 10, where a
typical autocorrelation function of the actual temperature mea-
surements and the calculated SCENARIO residuals are plotted
as a function of time lag.

The autocorrelation function shows how quickly the corre-
lation between samples decays as a function of time and is
a very useful tool in model selection and in determining the
theoretically possible prediction horizon for a given time se-
ries using linear modeling techniques. It should be noted that
the autocorrelation decay rate for the residuals is much faster
than that for the temperatures, making that signal harder to pre-
dict. For example, for a time lag of 20 min, the one used for
most of our predictions, the measured temperature signal has
an autocorrelation of around 0.7, whereas that for the residu-
als is only around 0.5. Hence, in selecting an “optimum” pre-
diction horizon for AR data-driven models, one needs to con-
sider the desired model accuracy, the autocorrelation function
of the signal, and the inertia of the physiological process being
modeled. The results of this study indicate that we can conser-

Fig. 10. Autocorrelation functions of temperature measurements and residu-
als between SCENARIO estimates and actual temperature measurements. The
function shows how consecutive data points of the time series are correlated
with each other as a function of the distance (time delay) in the time series.

vatively use data-driven models for making predictions up to
20–30 min ahead, which provide sufficient time for preventive
actions.

The first-principles SCENARIO model, on the other hand,
is driven by macroscopic energy conservation equations, and,
hence, is not affected by the lack of long-term correlations in
the core temperature signals. Thus, SCENARIO, as one would
expect by its design, should be used for mission-planning pur-
poses beyond 30–40 min, where the data-driven models are
not capable of producing meaningful predictions. Because this
first-principles model does not use past core temperature mea-
surements as inputs, it is less susceptible to sensor failure or
noisy measurements and can be used when no core temperature
measurements are available.

Another important finding is that, whatever data-driven model
is used for core temperature prediction, the model has to be reg-
ularized to produce credible estimates. The regularized models
are especially relevant when a relatively small number of sam-
ples are available for training the model. In this case, application
of parameter identification technique without regularization will
lead to statistically unreliable autoregression coefficients, and
as a result, to erratic predictions. The benefits of regularization
should be expected when the training and testing individuals
have different noise levels and, in particular, if the individual’s
test data are noisier than the training data. In this case, the un-
regularized predictions will diverge from the true temperature
because noise will be amplified.

The prediction of physiological variables should also be ac-
companied by a measure of reliability, e.g., error bounds, about
the predictions. In this respect, prediction intervals, either ana-
lytical ones or through the statistical bootstrap method, can be
incorporated into data-driven and hybrid models [12]. The esti-
mation of the reliability for first-principles model predictions is
less straightforward, requiring Monte Carlo simulations.
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IV. CONCLUSION

AR models can be developed to accurately predict core tem-
perature in humans for up to 20–30 min ahead. The other two
models tested (the first-principles SCENARIO model and a par-
allel hybrid model) show no advantage in terms of model fidelity
over the AR model for short-term predictions. In addition, the
AR model can be made “portable” from individual to individual
and across studies, which offers significant advantages in real-
world applications, since the same model can be “reused” for
different individuals and for different environmental conditions.
However, in this study, the data-driven model is only tested on
a rather homogeneous population of young, healthy individuals
and its portability across different demographic groups, notably
different age groups, remains an open question. Also, we note
that the conclusions about the superiority of the data-driven ap-
proach should be considered within the context of SCENARIO
and the hybrid models used in this study. Other first-principles
models may demonstrate better performance under similar
conditions.

An attractive implication of the results presented in this study
relate to the potential portability of data-driven models across
physically fit, young athletes and soldiers performing similar
types of activities. The ability to train a model on data from
just a handful of individuals and use it to predict core tempera-
ture for large groups of other individuals, without the need for
model tuning, will greatly facilitate the deployment of real-time
physiologic monitoring and predictive systems.
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